
Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

30-09-2012 Final Performance Report March 1, 2009 - June 30, 2012

Information Foraging Theory in Software Maintenance

FA9550-09-1-0213

Burnett, Margaret M

 
Oregon State University 
Corvallis, OR 97331

Air Force Office of Scientific Research 
875 N Randolph St 
Arlington, VA  22203 
Dr. Robert Bonneau/RSL

AFRL-OSR-VA-TR-2012-1210 

Approve for Public Release: Distribution Unlimited

This grant provides a theoretical foundation as to how to support programmers’ navigation. We develop a theory of information 
foraging for software maintenance. Then, to test the theory’s validity, generality, and scope, we build predictive models, and use 
them for empirical lab investigations to evaluate our progress. Finally, we develop library modules and tools for use to empirically 
investigate real-world settings.  The resulting theoretical foundation can replace practices of building software maintenance tools ad 
hoc, enabling principled progress in supporting programmers who maintain today’s complex software. 

information foraging theory, software debugging, programmer navigation

U U U U 19

Margaret M. Burnett

541-737-2539

Reset



INSTRUCTIONS FOR COMPLETING SF 298 

1. REPORT DATE.  Full publication date, including 
day, month, if available. Must cite at least the year 
and be Year 2000 compliant, e.g. 30-06-1998; 
xx-06-1998; xx-xx-1998. 

2. REPORT TYPE.  State the type of report, such as 
final, technical, interim, memorandum, master's 
thesis, progress, quarterly, research, special, group 
study, etc. 

3. DATES COVERED.  Indicate the time during 
which the work was performed and the report was 
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; 
May - Nov 1998; Nov 1998. 

4. TITLE.  Enter title and subtitle with volume 
number and part number, if applicable. On classified 
documents, enter the title classification in 
parentheses. 

5a. CONTRACT NUMBER.  Enter all contract 
numbers as they appear in the report, e.g. 
F33615-86-C-5169. 

5b. GRANT NUMBER.  Enter all grant numbers as 
they appear in the report, e.g. AFOSR-82-1234. 

5c. PROGRAM ELEMENT NUMBER.  Enter all 
program element numbers as they appear in the 
report, e.g. 61101A. 

5d. PROJECT NUMBER.  Enter all project numbers 
as they appear in the report, e.g. 1F665702D1257; 
ILIR. 

5e. TASK NUMBER.  Enter all task numbers as they 
appear in the report, e.g. 05; RF0330201; T4112. 

5f. WORK UNIT NUMBER.  Enter all work unit 
numbers as they appear in the report, e.g. 001; 
AFAPL30480105. 

6. AUTHOR(S).  Enter name(s) of person(s) 
responsible for writing the report, performing the 
research, or credited with the content of the report. 
The form of entry is the last name, first name, middle 
initial, and additional qualifiers separated by commas, 
e.g. Smith, Richard, J, Jr. 

7. PERFORMING ORGANIZATION NAME(S) AND 
ADDRESS(ES).  Self-explanatory. 

8. PERFORMING ORGANIZATION REPORT NUMBER. 
Enter all unique alphanumeric report numbers assigned 
by the performing organization, e.g. BRL-1234; 
AFWL-TR-85-4017-Vol-21-PT-2. 

9. SPONSORING/MONITORING AGENCY NAME(S) 
AND ADDRESS(ES).  Enter the name and address of the 
organization(s) financially responsible for and 
monitoring the work. 

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if 
available, e.g. BRL, ARDEC, NADC. 

11. SPONSOR/MONITOR'S REPORT NUMBER(S). 
Enter report number as assigned by the sponsoring/ 
monitoring agency, if available, e.g. BRL-TR-829; -215. 

12. DISTRIBUTION/AVAILABILITY STATEMENT.  Use 
agency-mandated availability statements to indicate the 
public availability or distribution limitations of the 
report. If additional limitations/ restrictions or special 
markings are indicated, follow agency authorization 
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include 
copyright information. 

13. SUPPLEMENTARY NOTES.  Enter information not 
included elsewhere such as: prepared in cooperation 
with; translation of; report supersedes; old edition 
number, etc. 

14. ABSTRACT.  A brief (approximately 200 words) 
factual summary of the most significant information. 

15. SUBJECT TERMS. Key words or phrases 
identifying major concepts in the report. 

16. SECURITY CLASSIFICATION.  Enter security 
classification in accordance with security classification 
regulations, e.g. U, C, S, etc. If this form contains 
classified information, stamp classification level on the 
top and bottom of this page. 

17. LIMITATION OF ABSTRACT.  This block must be 
completed to assign a distribution limitation to the 
abstract. Enter UU (Unclassified Unlimited) or SAR 
(Same as Report). An entry in this block is necessary if 
the abstract is to be limited. 

Standard Form 298 Back (Rev. 8/98) 



 
 

Final Performance Report 
 
 

Air Force Office of Scientific Research 
 

Systems and Software Program 
Dr. Robert Bonneau, Program Manager 

 
 
 
 

Grant: 
FA9550-09-1-0213 

 
Reporting Period: 

March 1, 2009  -  June 30, 2012 
 

Project Title: 
Information Foraging Theory in Software Maintenance 

 
Principle Investigator:  

Margaret Burnett 
Professor of Computer Science 

School of Electrical Engineering and Computer Science 
Oregon State University 

Corvallis, OR 97331 
Phone: 541-737-2539 

Email: burnett@eecs.oregonstate.edu 
  



 2 

1.	  Overview:	  Objectives	  and	  Accomplishments	  

The purpose of this grant was to develop a theory of information foraging for 
software maintenance. The original grant had six objectives that are summarized in Table 
1. The original objectives were 1, 2, 3, 4, 5a, and 6a.  As the table shows, the PI and then-
Program Manager Dr. Luginbuhl eventually decided to replace Objective 4 by Objectives 
5b and 6b, in order to leverage the potential synergy with the Large-Scale Cognitive 
Modeling effort supported by Grant FA9550-10-1-0326.  

We have accomplished all of these objectives, and our work is already making an 
impact.  Since this grant began, we have produced 12 publications, and these publications 
have already accumulated 87 citations. 

Table 1 summarizes the accomplishments by objective, and the next several sections 
detail the accomplishments for each objective. 

Table 1: Themes, Objectives, and Publications of this Grant.  (Deleted objective is struck out, new 
objectives are italicized.) 

Theme Objectives accomplished Publications 

Define the theory  
Objective 1: Define an information 

foraging theory (IFT) for software 
maintenance 

Lawrance et al. (to appear) 
Lawrance et al. 2010 
Ko et al. 2012 
Burnett et al. 2011 
Piorkowski et al. 2012b (in review) 

Develop and 
empirically evaluate 
computational models 

Objective 2: Develop predictive 
computational models for 
programmer navigation Lawrance et al. 2010 

Lawrance et al. (to appear) 
Piorkowski et al. 2011 Objective 3: Evaluate predictive 

computational models for 
programmer navigation 

(Replaced by 
Objectives 5b and 6b) 

Objective 4: Evaluate IFT on perfective 
software maintenance  N/A 

Develop and 
empirically evaluate 
software modules for 
tools 

Objective 5a: Develop software 
modules to apply or support IFT in 
navigation tools 

Piorkowski et al. 2012a 
Piorkowski et al. 2011 
Piorkowski et al. 2010 
Fleming et al. (to appear) 
Piorkowski et al. 2012b (in review) 

Objective 6a: Evaluate software tools 
that apply or support IFT 

Apply IFT to software 
tasks in Cognitive 
Modeling 

Objective 5b: Same as Objective 5a, 
but for cognitive modeling tools Bogart et al. 2010 

Bogart et al. 2012 Objective 6b: Same as Objective 6a, 
but for cognitive modeling tools 

 

2.	  Detailed	  Activities	  and	  Findings	  

2.1	   Objective	  1:	  Define	  an	  information	  foraging	  theory	  (IFT)	  for	  software	  
maintenance	  

Past theories of how programmers debug were developed in the context of very 
simple programming environments and very small programs. Further, they rely on 
complex mental constructs that offer little practical advice to builders of software 
engineering tools. In this research, we reconsidered how programmers go about 



 3 

debugging in large collections of source code using a modern programming environment. 
Building on the pioneering work of Pirolli and his colleagues [Chi et al. 2001, Fu et al. 
2007, Pirolli 1997, Pirolli and Card 1998, Pirolli and Card 1999], we developed an 
information foraging theory for the context of debugging that treats programmer 
navigation as being analogous to a predator following scent to find prey in the wild. The 
theory proposes that constructs like “scent” emanating from cues in the environment and 
“topology” of the information space provide enough information to describe and predict 
programmer navigation during debugging, without reference to in-the-head states of 
programmer cognition. 

We began by defining our IFT variant, focusing particularly on its constructs. We 
then performed empirical analyses of programmers’ behaviors according to these IFT 
constructs to validate the constructs and utility of our theory.   

2.1.1	   The	  theory’s	  constructs,	  and	  how	  to	  operationalize	  them	  
To handle the realm of debugging, we built upon the original information foraging 

constructs, resulting in the following definitions [Lawrance et al. 2009, 2010]: 
• Predator: The programmer who is debugging. 
• Prey: What the programmer seeks to know to reveal the changes that must be 

made to fix the bug. Furthermore, any information that the programmer seeks to 
achieve the goal also constitutes a form of prey. 

• Information patches: Localities in the source code, related documents, and 
displays that may contain prey.  

• Proximal cues: Words, objects, and perceptible runtime behaviors in the 
programming environment that suggest scent relative to the distal prey. Cues act 
as signposts to prey. For example, words in the source code, including comments, 
constitute a type of cue. 

• Information scent: The perceived likelihood of a cue leading to prey, either 
directly or indirectly. Scent is a measure, and scent from one cue can be compared 
to the scent of other cues. Unlike cues, scent exists only in the programmer’s 
head. This definition is consistent with Chi, Pirolli, et al.’s definition of 
information scent as “the subjective sense of value and cost of accessing 
[information] based on perceptual cues” [Chi et al. 2001]. 

• Topology: The collection of paths through the source code, related documents, 
and displays through which the programmer can navigate.  

To allow computational models of the theory, we developed the following operational 
definitions. Some constructs have self-evident operationalizations: we simply 
operationalize the prey construct as places in the code where changes must be made to fix 
the bug, the predator construct as a programmer, and the patch construct as localities in 
the source code, such as Java methods, classes, and packages.  

The notions of topology, cues, and scent are not as simple. We operationalize these 
constructs as follows: 

• Topology: A directed graph with vertices representing elements of the source code 
(e.g., classes, methods) and of the environment (e.g., class labels enumerated in a 
class hierarchy browser), and with edges representing navigable links between the 
elements.  



 4 

• Link: A connection between two nodes in the topology that allows the 
programmer to traverse the connection at a cost of just one click. For example, in 
the Eclipse editor, a method invocation can be clicked on to open the associated 
method definition. Hence, Eclipse provides links from method calls to definitions 
that the predator can navigate with one click. In this case, a method call is the 
source of a link and the associated definition is the destination. (Note that links 
are environment and context dependent.) 

• Proximal cues: Words located near the source of a link. For example, consider the 
following line of code opened in the Eclipse editor: 
“System.out.println(someData);”.  The identifier println is the 
source of a method-invocation link, and the words system, out, println, and 
someData are proximal cues that engender scent about potential prey at the 
other end of the link. 

• Scent: Word similarity between the bug report (description of the prey) and 
proximal cues. That is, a set of cues comprising words that appear frequently in 
the bug report will engender strong scent in the mind of the predator. 

The measure of scent warrants further explanation. Information scent is the 
programmer’s (imperfect) perception of the value (relatedness) of information (as in 
Pirolli’s information foraging research on web searching [Pirolli 1997]). To 
computationally approximate information scent, we compute word similarity between the 
description of the prey (e.g., bug-report text) and the proximal cues in the source code by 
applying cosine similarity to a vector space IR model. Note that this operational 
definition is the model’s approximation of scent; the true measure of scent exists only in 
the programmer’s head.  

Computing this approximation of scent is a three-step process. First, we preprocess 
the source-code text and bug report. We tokenize words so that camel case identifiers 
(e.g., “NewsItem.getSafeXMLFeedURL()”) are split into their constituent words 
(e.g., “news,” “item,” “get,” “safe,” “xml,” “feed,” and “url”). Furthermore, we apply the 
Porter stemming algorithm on the constituent words1 and filter out Java reserved words 
(e.g., public, static, and void) and English stopwords (e.g., “the,” “to,” “be,” “or,” 
and “not”). 

Second, we weigh terms in files of source code according to the commonly used tf-idf 
formula [Baeza-Yates et al. 1999], which we compute as follows: 

 ijiji idffw != ,,  

where 
jvv

ji
ji freq

freq
f

,

,
, max!
=    and    

i
i n

Nidf log=  

Here, fi,j is the frequency of word i in document j (normalized with respect to the most 
frequently occurring word v in a document), idfi is the inverse document frequency, and 
wi,j is the weight of word i in document dj. 

Third, we compute the inter-word correlation between proximal cues in source files 
and the text of a bug report using cosine similarity, a measure commonly used in 

                                                
1 Porter stemming is simple and efficient, but, like all stemming algorithms, it can stem words 

erroneously (i.e., producing different stems for different forms of the same words, or producing the same 

stem for different words) [Baeza-Yates et al. 1999]. 



 5 

information retrieval systems [Baeza-Yates et al. 1999]. We compute cosine similarity as 
follows: 

 

!!

!

==

=

"

"
=

"

#
=

t

i
qi

t

i
ji

t

i
qiji

j

j
j

ww

ww

qd

qd
qdsim

1

2
,

1

2
,

1
,,

),(
 

where wi,q is the weight of word i in the bug report text (i.e., the query in the terminology 
of [Baeza-Yates et al. 1999]). 

 

2.1.2	   Evaluating	  the	  theory’s	  constructs	  	  
We then performed a qualitative analysis [Lawrence et al. 2009; Lawrance et al. to 

appear] of lab study data that we had collected during preliminary work. The data 
consisted of videos and logs of 12 IBM programmers’ navigations while debugging an 
open-source project we asked them to work on. The purpose of the analysis was to 
attempt to apply the constructs rigorously to the behavior of real programmers, and also 
to compare use of these constructs to use of the more traditional construct of hypotheses. 
Our primary research questions for this analysis were: 

• RQ1: The literature emphasizes the importance of programmer hypotheses in 
understanding debugging behavior. Is there reason to expect a scent-based model 
of debugging navigation will succeed if it does not explicitly handle 
programmers’ hypothesis processing? 

• RQ2: Debugging involves a variety of activities, such as locating the fault, fixing 
the fault, and verifying the fix. When do developers engage in scent and 
hypothesis processing with respect to these activities? 

• RQ3: Programmers navigate through a variety of artifacts, such as source code, 
documentation, and email. Where do programmers navigate during debugging 
with respect to these artifacts, and in which artifacts do programmers exhibit scent 
seeking and hypothesis processing? 

 
Our results for each of these research questions were: 
• RQ1: The way participants worked with scent was consistent with information 

foraging theory. The participants verbalized activities related to scent about four 
times as often as (non-scent) hypotheses. The relationships between scent and 
some types of hypotheses may have contributed to the effectiveness of scent as a 
predictor. 

• RQ2: In the six debugging modes in our participants’ data, scent following was 
pervasive in all six of them, whereas (non-scent) hypotheses were mostly 
concentrated in just one of them, the predominant “fix” phase. This finding also 
helps to explain why scent was so effective at predicting programmer navigation. 

• RQ3: The biggest “trigger” for scent following was the source code itself, but 
other triggers included the bug report, runtime behavior, and additional resources 
such as web pages and input files. These findings suggest, first, that 
operationalization of the scent construct using static analysis of source code alone 
can produce reasonably accurate predictions and, second, that even greater 
accuracy may be possible if a model includes these additional data sources. 



 6 

2.1.3	   Evaluating	  the	  theory’s	  utility	  
One desirable attribute of a theory is its utility, i.e., its ability to generalize or gain 

understanding in ways not easily done before. To evaluate the utility of our theory, we 
turned our attend to one of the least studied areas of Information Foraging Theory, 
namely diet: the collection of information foragers choose to seek.  In the domain of 
software engineering, there has been a little empirical work in that area, but because it 
was atheoretic, generalizing it has not been easily done.  Examples of the kinds of 
questions we investigated were: do foragers choose solely based on cost, or do they 
stubbornly pursue certain diets regardless of cost? Do their debugging strategies vary 
with their diets? [Piorkowski et al. 2012b]. 

To investigate “what” and “how” questions like these for the domain of software 
debugging, we analyzed 9 professional developers’ foraging goals, goal patterns, and 
strategies. To bring our work together with the software engineering community’s, we 
began with a code set we based on the Information Goal code set on Sillito et al.’s 
empirically based taxonomy of 44 questions programmers ask, which Sillito et al. had 
grouped into four types [Sillito et al. 2006]. We also coded the strategies these 
professional programmers used, according to the categorization of Grigoreanu et al. 
[2010]. Finally, we analyzed goal sequences for information foraging “patterns”, and 
analyzed strategies by information foraging activity type. These analyses together 
produced insights into which information foraging activities and strategies programmers 
were using to target their different information goal types, and how the foraging patterns 
related to these results.  Table 2 shows the results for the top strategies. 

 

Table 2: Top strategies, their IFT activity category, which goal types professional programmers used them 
for, and in what kinds of foraging patterns [Piorkowski et al. 2012b]. 

Strategy How many 
used it? 

Top strategy for... 
... which 
participants 

... which IFT 
category 

... which Goal 
Type 

... which 
Patterns 

Within-Patch Strategies 
Spatial all 9 P9 Within 2-Build Pyramid 
Code Inspect. all 9 - - - - 
Between-Patch Strategies 
Control Flow all 9 - Between - Restart 
Feedback 
Follow. 

all 9 - - - - 

Enrichment Strategies 
Code Search 5 P3, P6, P7 - 1-initial Repeat, 

Oscillate, 
Stairstep 

Testing 8 P2, P5, P8, P10, 
P11 

Enrich. 3-group,  
4-groups 

- 

 
One surprising finding was the sheer amount of foraging: Participants spent 50% of 

their debugging time foraging for information to satisfy their diets.  This suggests that 
better support for programmers’ foraging efforts during debugging could potentially 
bring huge reductions in debugging costs. 

Participants’ goals often progressed in specific patterns: Just five such patterns 
covered 58% of the participants’ foraging. However, the patterns they mostly followed 
were not those predicted by previous literature. Specifically, use of the orderly Stairstep, 



 7 

Restart, and Pyramid patterns were relatively uncommon with less than 22% of the data 
following such patterns. The majority of their foraging instead fell into long stretches of 
foraging for goals of a single type (the Repeat pattern). 

The participants’ sometimes stubborn pursuit of particular information goals—
tolerating very high costs even when their efforts showed only meager promise of 
delivering the needed dietary goal—highlights an important difference in the software 
domain versus other foraging domains: Programmers’ dietary needs are often very 
specific. For an information forager on the Web, one dictionary page is often as good as 
another. But for a programmer trying to fix a bug, only very particular information about 
very specific code locations will help them in their task. This high dietary selectiveness in 
this domain may explain the high costs programmers were sometimes willing to pay. 

2.2	   Objectives	  2	  and	  3:	  Develop	  and	  evaluate	  predictive	  computational	  
models	  for	  programmer	  navigation	  

For Objectives 2 and 3, we incorporated the operationalizations from Section 2.1 into 
computational models, to evaluate the validity of IFT’s predictiveness of programmers’ 
navigations. We verified these computational models’ predictions against logs of 
programmers performing debugging. We built three such models: PFIS [Lawrance et al. 
2009], PFIS2 [Lawrance et al. 2010a] and PFIS3 [Piorkowski et al. 2011].  

2.2.1	   PFIS:	  Programmer	  Flow	  for	  Information	  Scent	  
Our first model was called PFIS (Programmer Flow for Information Scent) that 

predicts programmer method navigation [Lawrence et al. 2009; Lawrence et al. 2010b]. 
PFIS calculates the probability that a programmer will follow a particular “link” from one 
class or method in the source code to another, given a specific information need. 

More specifically, the model constructs a source topology graph T of the parts of the 
system that the developer has seen so far. The vertices of T represent patches (e.g., 
methods, packages, classes, and variables), and the edges represent between-patch links 
(e.g., “has-a” and “calls-a” relationships between these elements, and within-file 
adjacency relationships from the code). Thus, the set of classes A includes every class 
referenced in a file that developer has opened so far. Similarly, the set of methods M, set 
of variables I, and set of packages P include every method, variable, and package, 
respectively. For every element e ∈ A   M   I   P, the graph T contains a unique 
vertex that maps to e. T contains an edge between two elements ea and eb if ea calls eb, ea 
has eb or ea and eb are both methods and are adjacent in a source file. 

The graph T also includes words (the information features in the model) from the 
source files. Formally, D is the set of words that occur in all the source files that the 
developer has opened so far. A unique vertex is added to T for each word d ∈ D. Edges 
are added such that a word node w is connected to a non-word node x if the text 
associated with x (be it name, definition, or Javadoc) contains d. 

The model uses the above data structure to combine two factors: source-code 
topology and method-text similarity. It propagates the weights of each, using an 
algorithm based on spreading activation. Formally, each vertex in T has an activation 
value, initially 0. The activation of the current method vertex m is set to 1. The model 
“pumps” activation three times, spreading the values to adjacent nodes. The resulting 



 8 

nodes are then ranked according to weight, returning an ordered list of predictions as to 
which method the developer will visit next. 

Our evaluation of PFIS showed that the model was able to predict the classes that 
programmers navigated to better than a model that predicted visitations based on text 
similarity (calculated by cosine similarity of text in methods) alone for some tasks (see 
the ROC curve in Figure 1). The good performance of this first model led to further 
developments of PFIS into PFIS2 and PFIS3. 

 
Figure 1: Verbal hypothesis ROC curve: Ability to predict classes to which participants navigated directly 

after they expressed a hypothesis. 

2.2.2	   PFIS2:	  Adding	  reactivity	  
Computational models of other variants of information foraging theory, as well as our 

own PFIS model, assumed a relatively “fixed” goal; i.e., that the description of prey up 
front would be sufficient for the model’s understanding of the predators’ goal. PFIS also 
had a simplifying assumption that the source code never changes, which is of course not 
realistic for debugging situations.  

Relaxing both of these constraints, we developed a new model called PFIS2 that 
models information seeking when developer’s goals evolve over time [Lawrance et al. 
2010a]. We then evaluated variants of this model in a field study that analyzed 
programmers’ daily navigations over a seven-month period. Our results were that PFIS2 
predicted users’ navigation remarkably well, even though the goals of navigation, and 
even the information landscape itself was changing markedly during the pursuit of 
information. 

We evaluated PFIS2’s suitability for modeling real-world foraging by comparing how 
well PFIS2 could predict where these programmers really navigated.  Our empirical 
results revealed that: 
• PFIS2 accurately predicted our participants’ navigation. The most successful PFIS2 

variant (PFIS2-AllScent) achieved a median prediction rank of 3, and even 

!"#$%& '(!)&*+(,&
+-.&/#0123&
4563$%&*+(,&

+-.&/#0123&&
4563$%&*7(,&

'(!)&*7(,&

8#29$%&:;013<#656&
4563$%&*+(,&

8#29$%&:;013<#656&
4563$%&*7(,&

/$="1>&
?<$=@#&



 9 

predicted our participants’ navigations as its first choice 27% of the time. This 
occurred even in the absence of explicit descriptions of the prey such as bug 
reports. (See Figure 2 and Figure 3.) 

• PFIS2’s success was tied to course correction. Its incremental notions of prey 
allowed it to recover from big surprises very quickly (median: only one navigation 
for the two best variants). 

2.2.3	   PFIS3:	  A	  parameterized	  model	  	  
In light of these results, we began a number of comparisons to isolate specific factors 

that could be contributing to PFIS2’s past (and future) success.  We went about this 
investigation by parameterizing our model. We call the new parameterized model PFIS3. 
Model parameters include recency, which assigns higher values to methods that the 
programmer recently visited; working set, which assigns higher values to a group of 
methods that were visited most recently; frequency, which assigns higher values to 
methods that the programmer visits in total for the entire session; and bug report 
similarity, which assigns higher values to methods that are textually-similar to a bug 
report. 

In addition, we tested combinations of these single-factors in a theoretical ideal 
model. Our optimal composite model combined two or more single-factor models and 

was considered to accurately predict a 
single navigation any time one of its single-factor models got a hit in the top 10 ranked 
results. Clearly, this model is not feasible, but was developed to see what a best-case 
scenario would look like. 

We further tested each models’ predictive accuracy using two different 
operationalizations of programmer navigation.  The click-based operationalization, where 
a navigation was counted each time the text cursor of the editor was in a method, 
represented a navigation path that could be captured by a logging tool (Figure 4).  The 
view-based operationalization coded methods all methods visible on the screen as 
navigations, thereby including many more methods that the click-based approach alone. 
These navigations had to be coded manually, but represented a more complete set of what 
the programmer saw when debugging (Figure 5). 

 
Figure 2: PFIS2 performance with bug reports 

 

 
Figure  3: PFIS2 performance without bug reports. 

(Not shown: 27% of the time, programmers' 
navigations were the model's first choice.) 



 10 

 
Figure 4: Accuracy for PFIS3 variants for click-based navigations 

 
 

 
Figure 5: Accuracy for PFIS3 variants for view-based navigations 

 
 
These figures reflect empirical comparisons against programmers’ actual navigations. 

Overall in this investigation, we found that: 
• Recency was the most accurate model for predicting click-based navigations. 
• Scrolling actions were very common, and accounting for them with a view-based 

operationalization of navigation revealed much higher accuracy for Within-File 
Distance and lower relative accuracy for Recency than previously reported. 

• Bug Report Similarity exhibited low accuracy all around—a surprising finding 
given that many approaches use bug reports as input. 

• Our evaluation of optimally composed multi-factor models revealed the high 

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

0 5 10 15 20 

Hi
t R

at
io

 g
ive

n 
To

p-
N 

Pr
ed

ict
io

ns
 

N 

Recency Working Set (Δ=N) 
Frequency Bug Report Similarity 
Within-File Distance Forward Call Depth 
Undirected Call Depth Source Topology 

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

0 5 10 15 20 

Hi
t R

at
io

 g
ive

n 
To

p-
N 

Pr
ed

ict
io

ns
 

N 

Recency Working Set (Δ=N) 
Frequency Bug Report Similarity 
Within-File Distance Forward Call Depth 
Undirected Call Depth Source Topology 



 11 

potential of composing Recency and Within-File Distance to enhance accuracy, 
• Our spreading activation based multi-factor model, PFIS3+Recency, stood out as 

demonstrating consistent performance across both click- and view-based 
navigations. 

2.3	   Objective	  5a	  and	  6a:	  Develop	  and	  evaluate	  software	  modules	  to	  apply	  or	  
support	  IFT	  

We have created three types of software tools to encourage the adoption of scent into 
navigation tools: a data-gathering tool in Eclipse, a method recommendation system for 
programmers in Eclipse, and a library of design patterns for tool builders. 

2.3.1	   PFIG:	  A	  tool	  to	  collect	  information	  foraging	  data	  
PFIG (programmer flow information gatherer) is a data collector within Eclipse that 

provides data for these models [Lawrance 2009].  The system can capture navigation 
events and upload them to a central database. Using this tool, future tool builders can 
gather programmer navigation data in the presence of their own Eclipse add-ons, to 
facilitate evaluations of their own software tools for navigation support. 

2.3.2	   PFIS-‐R:	  A	  navigation	  recommender	  based	  on	  PFIS3	  
We also built a prototype recommender system based on an extension of PFIS3. We 

call this PFIS3-based recommender tool PFIS-R. This recommender tool provides in real 
time a list of methods that it recommends a programmer consider navigating to, plus 
shortcuts and bookmarking features to facilitate efficient navigation to them.   

Based on our empirical results of the predictiveness of various versions of PFIS3 
(Section 2.2), the PFIS-R recommender tool incorporates three factors: 

• Text similarity. Text within a method that was similar to the text of the method a 
developer is currently viewing is recommended highly compared to methods that 
are dissimilar. The text of a method are created as a stemmed “bag of words” with 
English and Java stopwords removed 

• Recency. A method that was among the n most recently visited is weighted more 
heavily than a method that was not recently visited. The values used in this 
experiment were 1 and 10. 

• Code structure. A method that is calls or is called by the method a developer is 
currently viewing is recommended highly compared to methods that do not refer 
to or are not referred by the current method. 

To evaluate PFIS-R, we installed it in Eclipse, and then empirically investigated how 
9 professional programmers from a large software company used different variants of 
PFIS-R when fixing an actual bug from an open-source project with almost 6,500 
methods.  

Our findings were: 
• When considering the next 10 navigations, developers more frequently navigated 

to methods suggested by the recommender (whether using the tool or not) when 
PFIS-R was seeded with a history of only the previous navigation than when it 
was seeded with a history of the past 10. This was true even when we considered 
the next 1 navigation only. 



 12 

• As developers progressed within the task, developers more frequently navigated 
to methods suggested by PFIS-R. This increase in performance suggests that the 
tool accurately models developers who were comfortable with the code base and 
the task. 

• Programmers responded positively to the PFIS-R version of the recommender 
tool. They used it not only to discover new methods, but also to efficiently 
navigate to methods that they had visited before. 

This work highlights the importance of incorporating recency into recommendations, 
and suggests that developers gain stronger scent as they progress throughout the task. The 
study also highlighted the relevance of semantic similarity as a method of recommending 
navigation. One implication of these findings is that information foraging theory may 
need to become more adaptive, changing in response to a developer learning about the 
code base that they are foraging in. 

2.3.3	   IFT	  design	  patterns	  
To enable software engineering researchers to design effective tools that use IFT 

principles, we surveyed numerous software maintenance tools in the software 
engineering literature, with the goal of showing how the theory can both demonstrate the 
commonality among those tools (to avoid continually reinventing certain aspects of them) 
and of producing practical design aids for tool builders. This work resulted in twelve 
information foraging theory design patterns [Fleming et al. 2012]. These patterns are 
summarized in Table 3. 

 



 13 

Table 3: Summary of Information Foraging Theory design patterns for tool builders [Fleming et al. 2012] 

Patterns for identifying valuable prey and patches 
Expertise recommender: Identify people who can help the developer with an information goal 
Lexical similarity: Identify patches that contain valuable prey based on their lexical similarity to 
words that emit strong scent to the developer 
Past aggregate behavior: Identify patches that contain valuable prey based on the past behavior of 
developers working on the project. 
Personal working set: Identify patches that the developer will likely revisit based on how recently 
the developer accessed or modified patches. 
Structural relatedness: Given a current patch in which the developer has indicated interest (e.g., 
by navigating to the patch and/or modifying the patch), this pattern seeks to identify other patches 
that contain valuable prey by looking at other patches that are structurally related to the current 
patch. 
Task heuristic: Identify patches that contain valuable prey by leveraging knowledge about the 
specific task that the developer is performing, and in particular, about what information 
developers typically seek during the task. 

Patterns for presenting prey 
Community portal: To provide an information patch where multiple contributors can enrich the 
patch with information features, especially cues. 
Cue decoration: To automatically change the appearance of a cue to attract more of the 
developer’s attention or augment a cue with additional information to improve the accuracy of 
scent discerned by the developer. 
Dashboard: To generate an information patch in which a developer can become aware of links 
that lead to continually changing information patches relevant to his or her work. 
Filtering: To enable the developer to filter out irrelevant information features from a patch, 
reducing the cost of processing the patch. 
Gather together: To enable a developer to assemble information features from disparate patches 
into a single patch, thus reducing the cost of navigating between those features. 
Signpost: To support enrichment by enabling the developer to leave cues in the environment 
which, when seen later, will attract the developer’s attention and/or engender accurate scent in the 
predator’s mind. 

 

2.4	   Objectives	  5b	  and	  6b:	  Apply	  IFT	  to	  software	  tasks	  in	  cognitive	  modeling	  

To leverage synergy with another AFOSR project, with the encouragement of the 
Systems and Software Program Manager at the time (Dr. Luginbuhl), we adapted 
information foraging theory to a non-traditional software development domain: the 
exploration of cognitive model traces. This helps to establish the generality of the theory. 

2.4.1	   IFT	  in	  cognitive	  modeling	  	  
Cognitive modelers are psychologists, linguists, etc., who write computational models 

that simulate the human mind, in order to test theories about cognition. In our initial 
formative work with AFRL cognitive modelers [Bogart et al. 2010] we described several 
aspects of this endeavor that make it a particularly challenging foraging task, and also 
somewhat different from the way professional programmers navigate in more traditional 
types of Java-based software: 

• Modelers are comparatively more interested in foraging through behavior traces 
rather than model “source code”, since models tend to be small and parsimonious, 



 14 

but model behavior is less predictable. Unlike Java statements that typically have 
deterministic effects, the commands issued by cognitive model rules are mediated 
by complicated equations with noise parameters.  Thus, modelers spend more 
time navigating behavior traces than navigating source code. 

• Not all scents in Java IFT apply well to behavior traces. In particular “lexical 
similarity” makes less sense in this domain since the lists of numbers and string 
values found in a trace are often highly repetitive or uninformative in isolation. 
Instead, modelers’ information seeking goals are patterns: sequences or 
juxtapositions of data, rather than individual words or numbers. Their scents must 
therefore relate to critical differences between those sought-out patterns. 

2.4.2	   Patches	  in	  cognitive	  modeling	  
Thus we needed to consider how to operationalize the IFT constructs differently to 

apply to this domain. Whereas patches in Java navigation tend to be methods or classes, 
in the cognitive modeling domain we defined them as distinct visualizations (graphical or 
textual/tabular/list) of trace data. In our work [Bogart et al. 2010], we defined “evaluation 
abstractions” as the abstract information need that the visualizations met (or did not meet, 
in many cases).  In that work we found three broad categories of evaluation abstraction 
(see Figure 6): 

• “Data” abstractions related information at a particular point in time: for example a 
diagram of a tree structure in memory at the end of a model run 

• “Time” abstractions related information across time: for example a time series 
plot of model reaction times to many (simulated) stimuli presented to it in a run  

• “Statistical” abstractions summed, averaged, or otherwise summarized many data 
items 

 
 

 
Figure  6: Three categories of abstract “patches” in analyzing behaviors of cognitive models. We observed 

several kinds of abstraction in each category. This figure denotes high co-occurrence with thicker lines. 



 15 

2.4.3	   Navigation	  in	  cognitive	  modeling	  
In an empirical study of how people navigated between their various views and 

visualizations while performing cognitive model debugging tasks, we were able to use 
this information foraging theory perspective to identify serious shortcomings in the tool 
set: 

• There simply were no patches for many types of common abstractions that 
modelers verbalized an interest in. Modelers had to navigate to a series of patches 
and remember or write down information to assemble the evaluation abstraction 
that interested them. 

• Navigation affordances between patches bore little relationship to the paths 
modelers needed and wanted to follow. Some of ACT-R’s native trace 
visualizations are useful for very particular kinds of questions, but there is no way 
to navigate between them when modelers sought answers that crossed boundaries 
between them.  So the “navigation” might involve restarting the model with 
identical parameters and somehow finding one’s place again in the new view. 

• These expensive navigations in the middle of answering a single “evaluation 
abstraction” cause modelers to forget the first half of the answer they’d already 
achieved. 

To find out what navigations should be supported by cognitive model behavior 
analysis tools, we conducted a Wizard-of-Oz study [Bogart et al. 2012]. In this study we 
let modelers ask for any kind of visualization they could imagine, one after another, in 
pursuit of an answer to a question posed to them about a misbehaving model. After each 
request, the experimenter tried to give them a close approximation of that using a query 
tool customized for the experiment.  

This Wizard-of-Oz experiment helped us confirm and expand on prior results about 
what patches should ideally be provided (Figure 7(a)). It also helped us find out, from the 
sequence modelers followed in pursuing questions among these patches, what the ideal 
navigation topology should be between hypothetical evaluation abstraction patches. 

We characterized the results of this study by designing a descriptive model of these 
navigations in the form of an abstract syntax. The syntax encoded each possible query in 
the space of queries modelers made (Figure 7(b) and (c)), and we arranged the syntax 
such that high-importance navigations were represented by proportionally smaller 
changes to the syntax. The syntax can then serve as a representation of both patch and 
topology; the majority of user navigations within a hypothetical interface designed 
around the syntax are low-cost (Figure 7 (d)). 



 16 

 
Figure 7: Validation results for the abstract syntax describing modeler navigation among evaluation 

abstraction patches. (a) How well the Wizard-of-Oz experimenter did at meeting participant requests in the 
“live” task during the experiment (b) How many of the abstractions in the study our abstract syntax 

covered (c) How well abstract syntax covered modelers needs in retrospect, judged by a panel of experts. 
(d) How expensive the navigations in the study would have been in a hypothetical interface designed 

around the abstract syntax. 

We have turned the abstract syntax described above into an Eclipse plugin, adapted it 
for five different cognitive modeling languages.  Going forward with the sister grant, 
which ends six months after the one we are reporting on here, we are currently evaluating 
it by running a field study of a model behavior analysis tool in real model debugging 
tasks. We have installed the tool on ten modelers’ workstations, and are collecting 
topology, navigation, and cue data on users’ modeling sessions. These data will allow us 
to validate the patch, navigation, and abstract syntax results above, as well as to collect 
detailed “in the wild” information foraging data on a domain markedly different from the 
Java navigation data in Objectives 5a and 6a.    

3.	   Publications	  

We are proud to have produced 12 publications under this grant, which have already 
been cited 87 times. 

2009	  
1. [Lawrance et al. 2009] Joseph Lawrance, Christopher Bogart, Margaret Burnett, 

Rachel Bellamy, and Kyle Rector, 2009. How people debug, revisited: An 
information foraging theory perspective, IBM Technical Report RC24783. 

2. [Lawrance 2009] Joseph Lawrance, 2009. Information Foraging in Debugging. 
Ph.D. Dissertation, Oregon State University. 

2010	  
3. [Lawrance et al. 2010a] Joseph Lawrance, Margaret Burnett, Rachel Bellamy, 

Christopher Bogart, and Calvin Swart, 2010. Reactive information foraging for 
evolving goals, ACM Conference on Human Factors in Computing Systems, April 
2010, 25-34.  



 17 

4. [Burnett 2010] Margaret Burnett, The Future of software engineering: Enhancing 
human expertise in tackling software quality (position paper), ACM FSE/SDP 
Workshop on the Future of Software Engineering Research, 75-76. 

5. [Lawrance et al. 2010b] Joseph Lawrance, Christopher Bogart, Margaret Burnett, 
Rachel Bellamy, Kyle Rector, and Scott Fleming. How programmers debug, 
revisited: An information foraging theory perspective, IEEE Transactions on 
Software Engineering, (accepted 2010, available in IEEE Digital Library, to 
appear in print). 

6. [Bogart et al. 2010] Christopher Bogart, Margaret Burnett, Scott Douglass, David 
Piorkowski, Amber Shinsel, 2010. Does my model work? Evaluation abstractions 
of cognitive modelers, IEEE Symposium on Visual Languages and Human-
Centric Computing, 49-58. 

2011	  
7. [Piorkowski et al. 2011] David Piorkowski, Scott D. Fleming, Christopher 

Scaffidi, Liza John, Christopher Bogart, Bonnie E. John, Margaret Burnett, and 
Rachel Bellamy, 2011. Modeling programmer navigation: A head-to-head 
empirical evaluation of predictive models, IEEE Symposium on Visual Languages 
and Human-Centric Computing, 109-116. 

8. [Ko et al. 2011] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, 
Margaret Burnett, Martin Erwig, Joseph Lawrance, Chris Scaffidi, Henry 
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and 
Susan Wiedenbeck, 2011. The state of the art in end-user software engineering, 
ACM Computing Surveys 43(3), Article 21.  

2012	  
9. [Piorkowski et al. 2012a] David Piorkowski, Scott D. Fleming, Christopher 

Scaffidi, Christopher Bogart, Margaret M. Burnett, Bonnie E. John, Rachel K. E. 
Bellamy, Calvin Swart, 2012. Reactive information foraging: An empirical 
investigation of theory-based recommender systems for programmers. ACM 
Conference on Human Factors in Computing Systems, 1471-1480. 

10. [Bogart et al. 2012] Christopher Bogart, Margaret Burnett, Scott Douglass, 
Hannah Adams, Rachel White, 2012. Designing a debugging interaction language 
for cognitive modelers: An initial case study in Natural Programming Plus. ACM 
Conference on Human Factors in Computing Systems, 2469-2478. 

11. [Fleming et al. 2012] Scott Fleming, Christopher Scaffidi, David Piorkowski, 
Margaret Burnett, Rachel Bellamy, Joseph Lawrance, Irwin Kwan, 2012. An 
information foraging theory perspective on tools for debugging, refactoring, and 
reuse tasks. ACM Transactions on Software Engineering Methodology, Volume 
22, Issue 2 (to appear). 

12. [Piorkowski et al. 2012b] David Piorkowski, Scott Fleming, Irwin Kwan, 
Margaret Burnett, Christopher Scaffidi, Rachel Bellamy, Joshua Jordahl. The 
whats and hows of programmers’ foraging diets (under review). 



 18 

References	  (outside	  our	  own	  publications)	  

[Baeza-Yates et al. 1999] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information 
Retrieval. Addison Wesley Longman, 1999. 

[Chi et al. 2001] E. Chi, P. Pirolli, K. Chen, and J. Pitkow, 2001. Using information scent 
to model user information needs and actions and the Web. In ACM Conference on 
Human Factors in Computing Systems, 490-497. 

[Fu and Pirolli 2007] W.-T. Fu, P. Pirolli. 2007. SNIF-ACT: a cognitive model of user 
navigation on the world wide web. Human-Computer Interaction, 22, 4, 355–412. 

[Grigoreanu et al. 2010] Grigoreanu, V., Burnett, M. and Robertson, G. 2010. A strategy-
centric approach to the design of end-user debugging tools. ACM Conference on 
Human Factors in Computing Systems, 713-722. 

[Pirolli 1997] P. Pirolli, 1997. Computational models of information scent-following in a 
very large browsable text collection. ACM Conference on Human Factors in 
Computing Systems, 3-10. 

[Pirolli and Card 1998] P. Pirolli, S. Card.  1998. Information foraging models of 
browsers for very large document spaces. Proceedings of the Working Conference on 
Advanced Visual Interfaces. 83–93. 

[Pirolli and Card 1999] P. Pirolli, S. Card, 1999. Information foraging. Psychological 
Review, 106, 4, 643-675. 

[Sillito et al. 2006] J. Sillito, G. Murphy, K. De Volder, 2006. Questions programmers 
ask during software evolution tasks. ACM Foundations of Software Engineering, 23–
34. 

 	  



 19 

Appendix	  A:	  Personnel	  Supported	  By	  Grant	  

The following individuals were funded using resources from this grant. 
• Hannah Adams (undergraduate research assistant) 
• Forrest Bice (high school intern/undergraduate research assistant) 
• Chris Bogart (Ph.D. student) 
• Margaret Burnett (Professor, PI) 
• Scott D. Fleming (postdoctoral scholar) 
• Irwin Kwan (postdoctoral scholar) 
• Joseph Lawrance (Ph.D. student) 
• Chris Scaffidi (Assistant Professor) 
• David Piorkowski (Masters student) 
• Kyle Rector (undergraduate research assistant) 
• Rachel White (high school intern/undergraduate research assistant) 

Appendix	  B:	  Summary	  of	  Lawrance	  Thesis	  

Title:	  Information	  Foraging	  in	  Debugging	  
An Abstract for the Dissertation of Joseph Lawrance for the degree of Doctor of 

Philosophy in Computer Science, Oregon State University. 
 
Programmers spend a substantial fraction of their debugging time by navigating 

through source code, yet little is known about how programmers navigate. With the 
continuing growth in size and complexity of software, this fraction of time is likely to 
increase, which presents challenges to those seeking both to understand and address the 
needs of programmers during debugging.  

Therefore, we investigated the applicability of a theory from another domain, namely 
information foraging theory, to the problem of programmers’ navigation during software 
maintenance. The goal was to determine the theory’s ability to provide a foundational 
understanding that could inform future tool builders aiming to support programmer 
navigation.  

To perform this investigation, we first defined constructs and propositions for a new 
variant of information foraging theory for software maintenance. We then operationalized 
the constructs in different ways and built three executable models to allow for empirical 
investigation. We developed a simple information-scent-only model of navigation, a 
more advanced model of programmer navigation, named Programmer Flow by 
Information Scent (PFIS), which accounts for the topological structure of source code, 
and PFIS2, a refinement of PFIS that maintains an up-to-date model of source code on 
the fly and models information scent even in the absence of explicit information about 
stated goals. 

 
Complete thesis is available at:  
http://ir.library.oregonstate.edu/xmlui/handle/1957/11994 

 


	fa9550-09-1-0213_sf298
	FA9550-09-1-0213



